ISSN 1820-9955 (Printed Ed.), ISSN 2683-4138 (Online)
NUTRITIVE AND PHYTOCHEMICAL QUALITY AND PHYTOBIOTIC PROPERTY OF PHYLLANTHUS AMARUS (SCHUM. & THONN.) ORIGINATING FROM NIGERIA
PDF

Keywords

Phytobiotics
Antibacterial
Antioxidant
Phyllanthus amarus
Phytochemical

How to Cite

1.
Eduviere AT, Ojugbeli ET, Akpo CO, Okpara O, Acha J, Onyesom I. NUTRITIVE AND PHYTOCHEMICAL QUALITY AND PHYTOBIOTIC PROPERTY OF PHYLLANTHUS AMARUS (SCHUM. & THONN.) ORIGINATING FROM NIGERIA. AVM [Internet]. 2025 Jun. 25 [cited 2025 Jul. 15];18(1):91-127. Available from: https://niv.ns.ac.rs/e-avm/index.php/e-avm/article/view/439

Abstract

Negative impact of antibiotics and synthetic antioxidants to livestock production including poultry are rising. Therefore, the current shift to phytobiotics as alternative that can improve the productivity and quality of commercial animals by enhancing feed property and performance. However, the use of phytobiotics in our environment is limited due to scarce research outputs. This study evaluates the nutrient quality, phytochemical constituents and phytobiotic (antimicrobial and antioxidant) properties of Phyllanthus amarus, a non-toxic medicinal herb, using standard procedures and documented methods. The results revealed that Phyllanthus amarus contains high quality nutrients and rich medicinal phytochemicals in both essential oil and methanol extract which demonstrated significant (p < 0.05) antibacterial activity with selectable characteristics against Escherichia coli, Staphylococcus aureus and Salmonella Enteritidis from poultry isolates. The plant’s samples (both extracts) also inhibited the growth of Eimeria tenella, a protozoan that causes coccidiosis in chickens. Furthermore, two of the gas chromatography-mass spectrometry identified compounds 6-methoxy-4-methyl-5-((5-[3-(trifluoromethyl)phenol]plenty)oxy)-8-quinolinylamine and glyoxalbis (2,4-dinitrophenyl-hydrazone) were respectively identified to have high docking interactions with bacterial ATP synthetase and OxyR protein complex, involved in bacterial protein synthesis and oxidative stress defense. In addition, these compounds inhibited Keap1 complex which induces oxidative stress in chickens. Thus, 6-methoxy-4-methyl-5-((5-[3-(trifluoromethyl)phenol]plenty)oxy)-8-quinolinylamine and glyoxalbis (2,4-dinitrophenyl-hydrazone) could be optimized and studied as hits for discovery of phytobiotics with antibacterial and antioxidants properties for use in livestock, especially poultry.

https://doi.org/10.46784/e-avm.v18i1.439
PDF

References

Achikanu, C., Ujah, I., Ezenwali, M.O. 2022. Vitamin content of Phyllanthus amarus leaf. IOSR Journal Of Pharmacy And Biological Sciences, 17(6): 61-65. https://doi.org/10.9790/3008-1706036165

Adamu, M., Naidoo, V., Eloff, J.N. 2013. Some southern African plant species used to treat helminth infections in ethnoveterinary medicine have excellent antifungal activities. BMC complementary and alternative medicine, 12: 213-219. https://doi.org/10.1186/1472-6882-12-213

Ademola, S.G., Farinu,G.O., Ajayi, A.O., Babatunde, G.M. 2004. Growth, haematological and biochemical studies on garlic and ginger-fed broiler chickens. Moor Journal of Agricultural Research, 5(2): 122–128. https://doi.org/10.4314/mjar.v5i2.31809

Akin-Osanaiye, C.B., Gabriel, A.F., Alebiosu, R.A. 2011. Characterization and antimicrobial screening of ethyl oleate isolated from Phyllanthus amarus (Schum and Thonn). Annals of Biological Research, 2(2): 298–305.

Alagawany, M., Elnesr, S.S., Farag, M.R., Abd El-Hack, M.E., Barkat, R.A., Gabr, A.A., Foda, M.A., Noreldin, A.E., Khafaga, A.F., El-Sabrout, K., Elwan, H.A.M., Tiwari, R., Yatoo, M.I., Michalak, I., Cerbo, A.D., Dhama, K. 2021. Potential role of important nutraceuticals in poultry performance and health-a comprehensive review. Research in veterinary science, 137:9–29. https://doi.org/10.1016/j.rvsc.2021.04.009.

Ameen, O.A., Hamid, A.A., Yusuf, Q., Njoku, O.G., Oseni, T.O. Jamiu, W. 2021. Quantitative and qualitative assessment of phytochemicals in methanolic extracts of hurricane weed (Phyllanthus amarus Schumach. & Thonn) Journal of Applied Sciences and Environmental Management, 25(2): 159-165. https://dx.doi.org/10.4314/jasem.v25i2.4

Anisimova A.S., Alexandrov A.I., Makarova N.E., Gladyshev V.N., Dmitriev S.E. 2018. Protein synthesis and quality control in aging. Aging (Albany NY), 10(12):4269-4288. https://doi.org/10.18632/aging.101721

Association of Official Analytical Chemists, A.O.A.C. 1990. 15th ed., Washington D.C., USA, 1178- 1205.

Basiouni, S., Tellez-Isaias, G., Latorre, J.D., Graham, B.D., Petrone-Garcia, V.M., El-Seedi, H.R., Yalçın, S., El-Wahab, A.A., Visscher, C., May-Simera, H.L., Huber, C., Eisenreich, W., Shehata, A.A. 2023. Anti-inflammatory and antioxidative phytogenic substances against secret killers in poultry: current status and prospects. Veterinary sciences, 10(1): 55. https://doi.org/ 10.3390/vetsci10010055

Baskar, R., Rajeswari, V., Kumar, T.S. 2007. In vitro antioxidant studies in leaves of Annona species. Indian journal of experimental biology, 45(5): 480-485.

Begum, M., Lyngdoh, W., Sharma, H.K. 2018. Formulation and evaluation of mosquito repellent ointment prepared with the essential oil of Zanthoxylum acanthopodium DC. Indigenous to Northeast India. International Journal of Green Pharmacy, 12(3): S518-S527.

Braca, A., Sortino, C., Politi, M., Morelli, I., Mendez, J. 2002. Antioxidant activity of flavonoids from Licania licaniaeflora. Journal of Ethnopharmacology, 79(3): 379–381, https://doi.org/10.1016/S0378-8741(01)00413-5

Chen, Y., Liu, Y., Zhao, C., Ma, J., Guo, J. 2025. Antibiotic resistance gene pollution in poultry farming environments and approaches for mitigation: A system review. Poultry Science, 104(3): 104858. https://doi.org/10.1016/j.psj.2025.104858

Cheng, C., Xia, M., Zhang, X., Wang, C., Jiang, S., Peng, J. 2018. Supplementing oregano essential oil in a reduced-protein diet improves growth performance and nutrient diigestibility by modulating intestinal bacteria, intestinal morphology, and antiioxidative capacity of growing-finishing pigs. Animals, 8(9): 159. https://doi.org/10.3390/ani8090159

Dakpogan, H.B., Houndonougbo, V.P., Pomalegni, C., Ahounou, J.E., Chrysostome, C. 2019. Evaluation of the effect of Phyllanthus amarus, Jatropha curcas and Piliostigma thonningii on experimental chicken coccidiosis. Journal of Animal and Plant Sciences (JAPS), 42(2): 7269–7278.

Dao, L., Tran, M.P., Caroline,D.,Joëlle, Q.L., Bui, T.B.H., Le Thi, B., Truong, Q.N., Bui, T.B.H., Do Thi, T.H., Nguyen, T.P., Patrick, K., Marie-Louise, S. 2020. Screening and comparative study of in vitro antioxidant and antimicrobial activities of ethanolic extracts of selected Vietnamese plants. International Journal of Food Properties, 23(1): 481–96. https://doi.org/10.1080/10942912.2020. 1737541

Dialoke, N., Onimisi, P., Afolayan, M. 2020. Performance, blood parameters and economic indices of broiler chickens fed graded levels of chestnut (Castenea sativa) phytobiotics as replacement for antibiotics growth promoters. Nigerian Journal of Animal Production. 47(2):161–70. https://doi.org/10.51791/njap.v47i2.123

Drummond, A.J., Waigh, R.D. 2000. The development of microbiological methods for phytochemical screening Recent Research Developments in Phytochemistry, 4: 143-152.

Elisha, I.L., Botha, F.S., McGaw, L.J., Eloff, J.N. 2017. The antibacterial activity of extracts of nine plant species with good activity against Escherichia coli against five other bacteria and cytotoxicity of extracts. BMC complementary and alternative medicine, 17(1): 133-142. https://doi.org/10.1186/s12906-017-1645-z

Eloff, J.N. 2004. Quantifying the bioactivity of plant extracts during screening and bioassay-guided fractionation. Phytomedicine: International Journal of Phytotherapy & Phytopharmacology, 11(4): 370–371.

Feng, J., Dong, H., Pang, B., Shao, F., Zhang, C., Yu, L., Dong, L. 2018. Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms. Physical Chemistry Chemical Physics, 20(22): 15244–15252. https://doi.org/10.1039/C8CP01403E

Filazi, A., Yurdakok-Dikmen, B. 2019. Nutraceuticals in poultry health and disease. In Nutraceuticals in veterinary medicine. Eds. R. Gupta, A. Srivastava, R. Lall, Cham: Springer. 661–672.

Ghasemzadeh, A., Jaafar, Z.H., Karimi, E., Ibrahim, M.H. 2012. Combined effects of CO2 enrichment and foliar application of salicylic acid on the production and antioxidant activities of anthocyanin, flavonoids and isoflavonoids from ginger. BMC complementary and alternative medicine, 12: 229-241. https://doi.org/10.1186/1472-6882-12-229

Ghosh, A.B.M., Banerjee, A., Chattopadhyay, S. 2022. An insight into the potent medicinal plant Phyllanthus amarus Schum. and Thonn. The Nucleus: an international journal of cytology and allied topics, 65(3): 437-472. https://doi.org/ 10.1007/s13237-022-00409-z.

Haunschild, R., Barth, A. French, B. 2019. A comprehensive analysis of the history of DFT based on the bibliometric method RPYS. Journal of Cheminformatics, 11(1): 72-81. https://doi.org/10.1186/s13321-019-0395-y

Kikusato, M. 2021. Phytobiotics to improve health and production of broiler chickens: functions beyond the antioxidant activity. Animal bioscience, 34(3):345-353. https://doi.org/10.5713/ab.20.0842.

Kovesi, B., Worlanyo, A.P., Kulcsar, S., Ancsin, S., Erdelyi, M., Zandoki, E., Mezes, M., Balogh, K. 2024. Curcumin mitigates ochratoxin A-induced oxidstive stress and alters gene expression in broiler chicken liver and kidney. Acta Veterinaria Hungarica, 72(1): 41-50. https://doi.org/10.1556/004.2024.01016

Li, J., Li, W., Luo, S., Ma, C., Liu, S. 2019. Alternate ultrasound/microwave digestion for deep eutectic hydrodistillation extraction of essential oil and polysaccharide from Schisandrachinensis (Turez) Baill. Molecules, 24 (7): 1288-1301. https://doi.org/10.3390/molecules24071288

Li, L., Sun, X., Zhao, D., Dai, H. 2021. Pharmacological applications and action mechanisms of phytochemicals as alternatives to antibiotics in pig production. Frontiers in Immunology, 12:798553. https://doi.org/10.3389/fimmu.2021.798553

Makhafola, T.J., Samuel, B.B., Elgorashi, E.E., Eloff, J.N. 2012. Ochnaflavone and ochnaflavone 7-O-methyl ether two antibacterial Biflavonoids from Ochna pretoriensis (Ochnaceae). Natural product communications, 7(12): 1601–1604.

Maksimova, Y., Zorina, A., Nesterova, L. 2023. Oxidative stress response and E. coli biofilm formation under the effect of pristine and modified carbon nanotubes. Microorganisms, 11(5), 1221. https://doi.org/10.3390/microorganisms11051221

Mamza, U.T., Sodipo, O.A., Khan, I.Z. 2012. Gas chromatography-mass spectrometry (gc-ms) analysis of bioactive components of Phyllanthus amarus leaves. International Research Journal of Plant Science, 3(10): 208-215.

Mandey, J.S., Sompie, F.N. 2021.Phytogenic feed additives as an alternative to antibiotic growth promoters in poultry nutrition. In Advanced studies in the 21st century animal nutrition. Eds. L. Babinszky, J. Oliveira, E. Mauro Santos, London: IntechOpen Limited: 19. https://doi.org/10.5772/intechopen.99401

Marshall, R.A., Aitken, C.E., Puglisi, J.D. 2009. GTP hydrolysis by IF2 guides progression of the ribosome into elongation. Molecular cell, 35(1):37-47. https://doi.org/10.1016/j.molcel.2009.06.008

Mazumder, A., Mahato, A., Mazumder, R. 2006 . Antimicrobial potentiality of Phyllanthusamarus against drug resistant pathogens. atural product research, 20(4): 323-326. https://doi.org/10.1080/14786410600650404

Miar, M., Shiroudi, A., Pourshamsian, K., Oliaey, A.R., Hatamjafari, F. 2021. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d ]thiazole-2(3 H )-imine and its para -substituted derivatives: Solvent and substituent effects. Journal of Chemical Research, 45(1–2): 147–158. https://doi.org/10.1177/1747519820932091

Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2): 55–63. https://doi.org/10.1016/0022-1759(83)90303-4

Naik, S.R., Bharadwaj, P., Dingelstad, N., Kalyaanamoorthy, S., Mandal, S.C., Ganesan, A., Chattopadhyay, D., Palit, P. 2022. Structure-based virtual screening, molecular dynamics and binding affinity calculations of some potential phytocompounds against SARS-CoV-2. Journal of Biomolecular Structure and Dynamics, 40(15): 6921–6938. https://doi.org/10.1080/07391102.2021.1891969

Ndomou, S.C.H., Tsapla, C.T., Djikeng, F.T., Teboukeu,G.B., Kohole, H.A.F., Ngoudjou, D.T., Mube, H.K., Womeni, H.M. 2018. Correlation between performance, carcass traits and blood lipid profile of broilers chicken fed with rations supplemented with plant powders. Journal of Applied Life Sciences International, 17(2): 1–12. https://doi.org/10.9734/JALSI/2018/40681

Okom, S.U., Ojugbeli, E.T., Okpoghono, J. and Onyesom, I., 2023. Safety and antimalarial therapeutic index of alkaloid-rich extract of Phyllanthus amarus Schumach. & Thonn. in mice. Heliyon, 9(12):e23078. http://doi.org/10.1016/j.heliyon.2023.e23078

Onyesom I., Ezedom T., Mordi J.C., Aganbi E., Elu C.O., Acha J.O. 2023. Assessment of Phytochemical Constituents and In Vivo Antimalarial Activity of Methanol Extract and Solvent Fractions of Phyllanthus amarus Schum. and Thonn. European Chemical Bulletin, 12(10): 4249-4270.

Onyesom, I., Onumaechi, I.F., Ehiwario, J., Dagana, R. 2015.Antiplasmodial activity of Phyllanthusamarus preserves renal function in Plasmodium berghei infected mice. European Journal of Medicinal Plants, 5 (1): 109 – 116. http://doi.org/10.9734/EJMP/2015/13230

Oshomoh, E.O., Uzama-Avenbuan, O. 2020. Quantitative phytochemical composition and bioactive constituents of ethanolic extracts of Phyllanthus amarus (Schum. et Thonn) leaves. European Journal of Agriculture and Food Sciences, 2(4): 59-62.

Pashtetsky, V., Ostapchuk, P., Il’yazov, R., Zubochenko, D., Kuevda, T. 2019. Use of antioxidants in poultry farming. IOP Conf. Series: Earth and Environmental Science 341:012042. http://doi.org/10.1088/1755-1315/341/1/012042

Pashtetsky, V., Ostapchuk, P., Kuevda, T., Zubochenko, D., Yemelianov, S., Uppe, V. 2020. Use of phytobiotics in animal husbandry and poultry. E3S Web of Conferences, 215:02002. https://doi.org/10.1051/e3sconf/202021502002

Pontes, M.H., Yeom, J., Groisman, E.A. 2016. Reducing Ribosome Biosynthesis Promotes Translation during Low Mg2+ Stress. Molecular cell, 64(3):480-492. http://doi.org/10.1016/j.molcel.2016.05.008

Priya, K., Yin, W.F., Chan, K.G. 2013. Anti-quorum sensing activity of the traditional Chinese herb, Phyllanthus amarus. Sensors, 13(11): 14558–14569. http://doi.org/10.3390/s131114558

Rakhee, R.N., Regin, S.A. 2008. Integrating the science of pharmacology and bioinformatics. Phyllanthus “The wonder plant”. Advanced Biotechnology. 10: 28-30.

Rozeboom, M.D., Tegmo-Larsson, I.M., Houk, K.N. 1981. Frontier molecular orbital theory of substitutent effects on regioselectivities of nucleophilic additions and cycloadditions to benzoquinones and naphthoquinones. The Journal of Organic Chemistry, 46(11): 2338–2345. https://doi.org/10.1021/jo00324a026

Shabbir, M., Khan, M.R., Saeed, N. 2013. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of Maytenusroyleanus leaves. BMC complementary and alternative medicine. 13: 143-158. https://doi.org/10.1186/1472-6882-13-143

Ulrikh, E.V., Khaliullin, R.S., Ganieva, I.A., Izhmulkina, E., Arzjutov, M. 2018. The content of biologically active substances in phytobiotics used for agricultural animals and poultry. International Journal of Engineering & Technology 7(3):445-449. https://doi.org/10.14419/ijet.v7i3.14.17040

Wang, Y., Xia, L., Guo, T., Heng, C., Jiang, L., Wang, D., Wang J., Li K., Zhan, X. 2020. Research Note: Metabolic changes and physiological responses of broilers in the final stage of growth exposed to different environmental temperatures. Poultry Science, 99(4): 2017-2025. https://doi.org/10.1016/j.psj.2019.11.048

Weather and Climate. 2024. The Global Historical Weather and Climate Data. Retrieved from: http://weatherandclimate.com/nigeria. Accessed: 18.10.2024.

Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., Huang, Z. 2020. Computational Approaches in Preclinical Studies on Drug Discovery and Development. Frontiers in Chemistry, 8: 726. https://doi.org/10.3389/fchem.2020.00726

Zirihi, G.N., Mambu, L., Guédé-Guina, F., Bodo, B., Grellier, P. 2005. In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. Journal of ethnopharmacology, 98(3): 281–285. https://doi.org/10.1016/j.jep.2005.01.004

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2025 Archives of Veterinary Medicine