CONGRESS PRESIDENT

Prof. Dr. Viktor Nedović, Faculty of Agriculture, University of Belgrade, Serbia

INTERNATIONAL SCIENTIFIC COMMITTEE

Prof. Dr. Peter Raspor, Biotechnical Faculty, University of Ljubljana, Slovenia
Prof. Dr. Roger Fenwick, Institute of Food Research, Norwich, United Kingdom
Prof. Dr. Dietrich Knorr, Berlin University of Technology, Germany
Prof. Dr. Brian Mckenna, University College Dublin, Ireland
Prof. Dr. Viktor Nedović, Faculty of Agriculture, University of Belgrade, Serbia
Dr. Jovanka Levic, Institute of Food Technology in Novi Sad, Serbia
Prof. Dr. Gustavo V. Barrosa-Carreras, Center For Nonthermal Processing of Food, Washington State University, USA
Prof. Dr. José Aguilera, Catholic University of Chile, Chile
Prof. Dr. Eyal Shimon, Department Of Biotechnology And Food Engineering, Technion – Israel Institute of Technology, Israel
Dr. Nebojša Ilic, Institute of Food Technology in Novi Sad, Serbia
Dr. Vesna Tumbas, Faculty of Technology, University of Novi Sad, Serbia
Prof. Dr. Branko Bugarski, Faculty of Technology and Metallurgy, University of Belgrade, Serbia
Dr. Juan Vaiverde, Teagasc, Ireland
Prof. Dr. Laura Piazza, Department of Food Science and Technology, State University of Milan, Italy
Prof. Dr. Taoukis Petros, School of Chemical Engineering, National Technical University of Athens, Greece
Dr. Anamanka Mandić, Institute of Food Technology in Novi Sad, Serbia
Dr. Aleksandra Mišan, Institute of Food Technology in Novi Sad, Serbia
Dr. Marijana Sakač, Institute of Food Technology in Novi Sad, Serbia
Prof. Dr. Sladana Šobajić, Faculty of Pharmacy, University of Belgrade, Serbia
Prof. Dr. Francesco Capozzi, Faculty of Agriculture, University of Bologna, Italy
Dr. Hrub Lelieveld, Ghi Association Netherlands and EFST Executive Committee, Netherlands
Prof. Dr. Dominique Bauchart, INRA, Clermont Ferrand, France
Prof. Dr. Bogdan Yegorov, Odessa National Academy of Food Technologies, Ukraine
Prof. Dr. Mark Shamsutyan, St. Petersburg State Institute of Technology, Technical University of Moscow, Russia
Prof. Dr. Jana Hajsova, Institute of Chemical Technology, Prague, Czech Republic
Prof. Dr. Giovanni Dinelli, Department of Agroenvironmental Sciences and Technologies, University of Bologna, Italy
Prof. Dr. Željko Knez, Faculty of Chemistry and Chemical Engineering, University of Maribor, Slovenia
Dr. Diego Moreno-Fernández, Spanish National Research Council, Spain
Prof. Dr. Gerhard Schleining, Boku, Vienna, Austria
Prof. Dr. Živko Nikolov, Department of Biological & Agricultural Engineering, Texas A&M University, USA
Prof. Dr. Andras Salgo, Faculty of Chemical and Biochemical Engineering, Budapest University of Technology and Economics, Hungary
Dr. Nastasia Belc, Institute of Food Bioresources, Bucharest, Romania
Prof. Dr. Vladimir Mrša, Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia
Prof. Dr. Drazenka Komes, Faculty of Food Technology and Biotechnology, University of Zagreb, Croatia
Prof. Dr. Radoslav Grujić, Faculty of Technology Zvornik, University of East Sarajevo, BIH Republic of Srpska
Prof. Dr. Vladimir Kukunov, Veterinary Faculty, St. Kliment Ohridski University, Macedonia
Prof. Dr. Vural Gökmen, Food Engineering Department, Hacettepe University, Turkey
INFLUENCE OF MYCOTOXINS IN SWINE FEED ON THE HEALTH STATUS OF PIGLETS

Prodanov-Radulović Z. Jesna1, Došen D. Radoslav1, Stojanov M. Igor1, Pušić M. Ivan1, Živković-Baloš M. Milica1, Urošević I. Miroslav2

1Scientific Veterinary Institute „Novi Sad”, Rumenacki put 20, 21000 Novi Sad, Serbia;
2Agriculture School, Cara Milice 2, Futog, Serbia

*Corresponding author:
Phone: +38121469313
Fax: +38121518544
E-mail address: zjessna.prodanov@gmail.com

ABSTRACT: Mycotoxins are secondary metabolites of fungi that can contaminate animal feeds at all stages of food production chain. Consumption of feed contaminated with mycotoxins may result in immunosuppression, which represent a factor predisposing livestock to infectious diseases. From the epidemiological point of view, it is important to note that mycotoxins may cause breakdown of active immunity and occurrence of disease even in properly vaccinated animals. The aim of the paper was to evaluate the influence of mycotoxins on the health status of piglets. The material for this research included the samples from five swine farms, where health disorders in suckling and weaned piglets were detected. Depending on the specificity of each evaluated case and available material, the applied research methods included: epidemiological and clinical evaluation, pathomorphological examination, standard laboratory testing for detection the presence of aerobic and anaerobic bacteria, virological testing and microbiological feed testing, in order to examine the presence of fungi and mycotoxins by the method of thin layer chromatography. In our research the persistent presence of various infections, which react poorly or do not react on the applied antimicrobial therapy was discovered. The presence of mycotoxin in feed can be directly connected to the detected health disturbances in piglets on the examined swine farms (vulvovaginitis, pneumonia, gastroenteritis).

Key words: mycotoxins, swine feed, piglets diseases

INTRODUCTION

Mycotoxins are secondary metabolites of mould, and so far, approximately 400 secondary metabolites with toxigenic potential produced by more than 100 moulds have been reported (Kabak et al., 2006). At the global level, it is considered that 25% of the world crop production is contaminated by mycotoxins, which may be a risk factor affecting human and animal health (Bouhet and Oswald, 2005). The issue of mycotoxins and mycotoxicoses in veterinary medicine is directly connected to the usage of mouldy and adversely storage of different types of grains (corn, wheat, barley) in animals feed (Osweller, 2006).

In swine production in our geographic region, the most common are mycotoxicosis caused by zearalenon (F-2 toxin, ZEA), but also aflatoxins (AF), ochratoxin (OCT) and trichothecenes. (Gonzales and Rodriguez, 2008). The clinical and pathomorphological picture of mycotoxicoses in swine depend on the age and category (breeding animals, sucking and weaned piglets, fatteners) (Prodanov et al., 2009). The young animals are much more sensitive to the effects of mycotoxicoses comparing to adults. Mycotoxins have hepatotoxic, nephrotoxic and immunosuppressive effects (Kabak et al., 2006), which can further complicate clinical and pathomorphological picture and diagnosis of mycotoxicosis in swine. The biggest challenge with mycotoxicoses is the non-specific nature of symptoms in the affected animals. Consequently, the health disorders due to mycotoxins in the feed are difficult to diagnose (Osweller, 2006; Prodanov et al. 2009). It has been recognised by veterinary clinicians that marked immunosuppression is observed in livestock ingesting mycotoxins at levels below those that cause overt toxicity (Oswald et al., 2005). Immunosuppressive effects of mycotoxins are of special interest and may have significant influence on the occurrence of infective diseases of pigs (Obremski et al., 2008; Prodanov-Radulović et al., 2011).
The aim of the paper was to evaluate the influence of mycotoxins on the health status of suckling and weaned piglets.

MATERIAL AND METHODS

The material for this research included the samples from five swine farms, where health disorders in suckling and weaned piglets were detected. Depending on the specificity of each evaluated case and available material, the applied research methods included: epidemiological and clinical evaluation, pathomorphological examination, standard laboratory testing for detection the presence of aerobic and anaerobic bacteria, virological testing and microbiological feed testing, in order to examine the presence of fungi and mycotoxins by the method of thin layer chromatography.

RESULTS AND DISCUSSION

In the first examined farm, the health disturbances in suckling piglets and weaners were registrated. Clinically, the diarrhoea in suckling piglets already in the first 3 days of life after farrowing were detected. After supervision of the farm records several facts were discovered: diarrhoea occurs in the piglets of normal birth body weight, the percent of mortality is higher in animals in good body condition and on the weaning there is 30% of small piglets. Therapeutic treatment of piglets by oral and parenteral antibiotics application did not improve health problems. On the farm dams are twice vaccinated during gestation with the aim to prevent disease in piglets (diarrhoea) in the first days of life. By clinical examination the certain number of suckling piglets the clinical sign of vulvovaginitis (swelling and reddening of the vulva) were discovered. Carrying health control in the weaned piglets the diarrhoea and signs of pneumonia (cough, nasal secretion) were detected. The pathomorphological examination of the dead sucking piglets revealed lesions dominantly on the mucosal surface of the digestive tract (Haemorrhagiae mucosae ventriculi, Enteritis cattalrralis acuta). In dead weaners beside lesions in the digestive tract, the prominent pathological changes in lungs were discovered (Pneumonia fibrinosa in statu hepatisationis rubrae et gisae). By bacteriological testing on tissue samples deriving from dead animals the following bacteria was detected: Escherichia coli haemolytica. Streptococcus alfa haemolyticus. Pasteurella sp. Having in mind the clinical and pathological symptoms observed, especially the signs of vulvovaginitis in just farrowed piglets, a justified suspicion on the presence of mycotoxins in feed was made. Microbiological first feed for piglets testing detected 3-fold increase in the number of fungi genera Fusarium sp, Penicillium, Aspergillus, Rhisopus sp. as compared to the level set by the regulation. Applying further laboratory testing increase of the total number of fungi in the large number of examined feed was discovered: corn (887x10^9 Aspergillus, Rhisopus), piglets second feed (319x10^7 Aspergillus, Mucor, Rhisopus), feed for pregnant sows (123x10^7 Penicillium, Fusarium) and feed for lactating sows (528x10^7 Aspergillus, Penicillium. Mucor). The presence of mycotoxins was detected: zearalenon (ZEA) in the feed for pregnant sows (0.72 mg/kg), aflatoxin (AF) B1 in the piglets first feed (0.018 mg/kg) and ochratoxin (OCT) A in the piglets second feed (0.12 mg/kg).

On the second examined swine farm the health problems included increased incidence of clinical and pathomorphological signs of infective diseases. Analysing the existing data on the farm, the high mortality in piglets 7 days before weaning was noticed, which do not decrease after medical treatment. With the aim to overcome the problem, the measure of medical treatment of piglets 3 days before weaning was introduced, but again with no result. In the weaned piglets the disease was clinically characterised with the signs of severe yellowish diarrhoea, dehidratation, huddling, roughly hair and sporadically coughing. Therapeutic treatment of the diseased animals was multiple: the antibiotics were given through feed, water and parenterally. Applying pathomorphological examination on the dead weaned piglets, the prominent changes on the digestive and respiratory tract were detected (Gastroenterotyphilitis haemorrhagica, Poliserositis fibrinosa massiva, Pneumonia complex).
By bacteriological testing on tissue samples from dead piglets the following bacteria were isolated: *Escherichia coli* haemolytica, *Pasteurella sp.* *Streptococcus uberis*. By laboratory feed testing i.e. the available first feed for piglets the presence of OCT (0.5 mg/kg) and ZEA (4 mg/kg) was discovered.

The presence of mycotoxin in feed for pregnant sows have influence on the occurrence of decreased immunological defence in piglets (Prodanov et al., 2009). As a consequence of immunosuppressive action of mycotoxins, clinical and pathological lesions correspond to the infective diseases of different ethiology (Kabak et al., 2006; Obremski et al., 2008). Combinations of several mycotoxins may potentiate the action of one other, or at least exert an additive effect (Oswaler, 2009). Nutritional effects associated with feed refusal may also contribute to observed decreased efficacy of therapeutic treatments and vaccination (Oswald et al., 2005). In the second evaluated case, the presence of OCT and ZEA in the swine feed was detected. Consequently, on the farm an evident decrease in the swine immunity against infective diseases was noticed and there was no positive respond on the applied antibiotic therapy. Also, the occurrence of diarrhoea and increased percent of waste piglets can be connected with presence the mycotoxins in the feed, because the piglets display clinically feed refusal. The gastrointestinal tract represents the first barrier against ingested food contaminants and natural toxins. Following ingestion of mycotoxin contaminated feed, intestinal epithelial cells could be exposed to a high concentration of toxin (Bohuet and Oswald, 2007). From a public health perspective, increased infections in animals may result in increased animal-to-human transmission of pathogens and increased antibiotic concentrations in meat, as a consequence of animal treatment (Oswald et al., 2005).

The complex health problems on the third swine farm were noticed. Applying control of the anamnestic data, lately the frequent periods when sows delivery mumified piglets, stillbirths and decreased litter size were observed. Beside this, just farrowed piglets are nonviable despite the medical treatment, they live only 3-4 days after birth. In the pregnant dams the immunophylaxis is carrying out with the aim to prevent the outbreak of disease in suckling piglets. Beside this, the antibiotics are added in the sow's feed 7 days before and 7 days after farrowing. Sporadically, the occurrence of severe yellowish diarhoea in piglets and apparent clinical signs of vulvovaginitis in just born piglets were evident. In the weaners the clinical signs of diarrhoea and pneumonia are sporadically noticed. The pathomorphological examination of the dead weaners revealed lesions on the organs of respiratory (*Pleuro pneumonia actinobacillosa, Pneumonia interstitialis*) and digestive tract (*Gastroenteritis haemorrhagica acuta*). Applying bacteriological examination on the tissue samples deriving from dead piglets the following bacteria were isolated: *Escherichia coli* haemolytica, *Pasteurella sp.* *Actinobacillus suis*. After laboratory testing of swine feed samples the simultaneous presence of several mycotoxins was established: ZEA (6.4 mg/kg), AF (0.0064 mg/kg), OCT-A (0.032 mg/kg).

For the known mycotoxins of clinical importance for swine production, the response is usually subacute or chronic and the presenting signs are often subtle and vague (Gonzales and Rodriguez, 2008). The continuous intake of small amounts of mycotoxins leads to chronic intoxication which is clinically characterized by the loss of weight, insufficient weight gain and increased susceptibility for infectious diseases (Oswaler, 2006). Ingestion of low doses of mycotoxins can increase intestinal colonization by opportunistic pathogenic bacteria in piglets (Oswald et al., 2005; Taranu et al., 2005). Mycotoxins mixtures i.e. the combinations of several micotoxins are likely to occur naturally and they may influence on the immunity in an additive or synergistic manner. Economic losses that occur as a consequence of interaction of several mycotoxins are still unknown because in low concentrations several mycotoxins may interact in a way that is difficult to detect. Combinations of several and more moderate concentrations of different mycotoxins, which individually may appear to be too low in level to be a concern, can cumulate into toxicosis, which affect the ability of the pigs organism to fight diseases (Diekmann and Green, 1992; Oswaler, 2006).

On the fourth examined farm, clinically in suckling piglets the sings of severe disturbance of the central nervous system (wide open eyes, paddling, trembling, ataxia, paresis and paralysis) were detected. In some cases the whole litter of piglets died within 48 hours.
Despite the fact that the piglets were therapeutically treated, there was no evident respond to applied medication. The pathomorphological changes that were detected in dead sucklings indicated the lesions characteristic for Morbus Aujeszky infection (MA) (Necroses miliarem hepatis, Haemorrhagiae corticis renis, Tonsillitis diphteroides necroticans). By microbiological testing in feed for lactating sow the presence of fungi (Fusarium sp., Mucor) and AF (0.02 mg/kg) were detected. Applying virological testing (viral isolation on the susceptible cell culture) from the tissues deriving from dead piglets the MA virus was isolated.

Aflatoxins (B1, B2, G1, G2) are recognized as immunomodulatory agents, and when AFB1 is metabolised by mammals occurs in milk as M1. It is assumed that AFB1 is the most toxic fraction (Osweiler, 2006; Živkov-Baloš et al., 2008). In the case where the outbreak of MA on the farm were examined, mycotoxin (AF) in the feed can be connected with the possible reactivation of chronic (latent) infection. It has been discovered that aflatoxins decrease resistance to bacterial, fungal, viral and parasitic diseases in swine. Subsequently, vaccinations against various infective diseases may be less effective in animals exposed to mycotoxins (Diekmann and Green, 1992). Even when is present in low doses, AF alters the immune response and this may predispose pigs to infectious diseases. From the epidemiological point of view, it is important that mycotoxins can cause breakdown of active immunity and occurrence of disease even in properly vaccinated animals (Marin et al., 2002; Oswald et al., 2005; Tararu et al., 2005).

In the last examined case, in suckling piglets the occurrence of neonatal diarrhea already in the first 3 days of life after farrowing were detected. These health problems did not improve after the medical treatment with antibiotics. In great number of just farrowed piglets the most prominent clinical sign was vulvovaginitis (swelling and reddening of the vulva). Beside this, a large number of small, weak and splayleg piglets were noticed. The newborn piglets were weak, nonviable, with diarrhoea. The diseased piglets lived only for 4 days after birth. They probably died due to hypoglicemia, because sows did not have enough milk or the piglets were too weak and did not have enough strength for milk suckling. Applying patomorphological examination on the dead sucking piglets the prominent changes on mucosal surfaces of the digestive tract (Gastroenteritis haemorrhagica), less number of pale kidneys, necrotic and distrophic processes on liver tissue were detected. By laboratory testing of the available swine feed grains, the presence of ZEA in different concentrations was detected (from 0.72 to 6.4 mg/kg). The ZEA mycotoxicosis in weaned piglets was clinically characterised with signs of pneumonia, slow growth, vulvovaginitis and necrosis of the tails, sporadically with diarrhoea and rectal prolapses. The patomorphological examination of the dead weaners revealed the following lesions: bleeding on the mucosal surface of the digestive tract, pleuropneumonia and pneumonia, hepatomegalias, focal nephritis and rectal prolapses. Ethiologically the pneumonia was caused by Actinobacillus pleuropneumoniae, Haemophilus suis, and Mycoplasma hypneumoniae. Also the problem that was frequently observed was digestive infection with enteropathogenic Escherichia coli, which can be potentiated with the detected mycotoxin (ZEA 0.8 mg/kg) and a high number of different fungi species in weaners feed (Fusarium, Penicillium, Aspergillus, Rhyosopus).

Zearalenone is a mycotoxin which as an estrogen binds competitively to estrogen receptors of the uterus, mammary gland, liver and hypothalamus (Gajecki, 2002). Pigs are the most prone to the presence and negative effects of ZEA (Diekmann and Green, 1992; Otrembski et al., 2003). In our research, the perinatal hyperestrogenic syndrome was a constant clinical sign in suckling piglets. This is certainly the consequence of mycotoxins presence in feed for sows. e.g. during the pregnancy and the presence of its excreted metabolite in milk of the exposed sows.

CONCLUSIONS

The influence of mycotoxins on immune system is of special interest in swine industry. The technology on swine farms demands frequent vaccinations, especially in piglets and sows which may be a problem in the case of immunocompromised animal. From the obtained
results an example of immunosuppressive effect can be presented i.e. the occurrence of enterotoxemia in piglets, despite the fact that dams were vaccinated twice during gestation. The enterotoxemia is caused by pathogenic bacterial strains and occurs frequently as a cause of mortality in the young categories. It can be provoked with the feed quality i.e. the presence of mycotoxins.

The presence of mycotoxins in feed can be directly connected to the detected health disturbances of the examined piglets. In our research we discovered the persistent presence of various infections which react poorly or do not react on the applied antimicrobial therapy (gastroenteritis, pneumonia). Also, the chronic disturbances, for instance slow growth, malnutrition, vulvovaginitis suggest on the potential presence of mycotoxins.

ACKNOWLEDGEMENTS

This paper is a result of the research within the project TR 31084 "Praćenje zdravstvenog stanja divljači i uvodenje novih biotehničkih postupaka u detekciji zaraznih i zoonoznih agenasa - analiza rizika za zdravlje ljudi, domaćih i divljih životinja i kontaminaciju životne sredine (Wild animal health monitoring and introduction of new biotechnology procedures in detection of infectious and zoonotic agents – risk analysis for human health domestic and wild animal health and for environmental contamination)", financed by the Ministry of Education and Science, Republic of Serbia.

REFERENCES