Molecular studies of European classical rabies viruses (RABV) have revealed a number of geographically clustered lineages. To study the diversity of Balkan RABV, partial nucleoprotein (N) gene sequences were analysed from a unique panel of isolates (n = 210), collected from various hosts between 1972 and 2006. All of the Balkan isolates grouped within the European/Middle East Lineage, with the majority most closely related to East European strains. A number of RABV from Bosnia & Herzegovina and Montenegro, collected between 1986 and 2006, grouped with the West European strains, believed to be responsible for the rabies epizootic that spread throughout Europe in the latter half of the 20th Century. In contrast, no Serbian RABV belonged to this sublineage. However, a distinct group of Serbian fox RABV provided further evidence for the southwards wildlife-mediated movement of rabies from Hungary, Romania and Serbia into Bulgaria. To determine the optimal region for evolutionary analysis, partial, full and concatenated N-gene and glycoprotein (G) gene sequences were compared. Whilst both the divergence times and evolutionary rates were similar irrespective of genomic region, the 95% highest probability density (HPD) limits were significantly reduced for full N-gene and concatenated NG-gene sequences compared with partial gene sequences. Bayesian coalescent analysis estimated the date of the most common recent ancestor of the Balkan RABV to be 1885 (95% HPD, 1852–1913), and skyline plots suggested an expansion of the local viral population in 1980–1990, which coincides with the observed emergence of fox rabies in the region.

INTRODUCTION

Molecular studies of classical rabies virus (RABV) both at the national and global levels have broadened the understanding of the diversity of this virus species, which is responsible for an estimated 55 000 human deaths per year (WHO, 2005). In Europe, RABVs cluster within a ‘Cosmopolitan lineage’ having ancestral roots in Europe in the 18th century before its assumed widespread dispersal to Asia, Africa and the Americas as a result of European exploration and colonization (Smith et al., 1992; Badrane & Tordo, 2001; Nadin-Davis & Bingham, 2004; Bourhy et al., 1999; McElhinney et al., 2006). More comprehensive phylogenetic analysis of European RABV strains revealed a number of distinct groups, each associated with a particular geographical area, suggesting that RABV has spread westwards and southwards across Europe during the last century (Bourhy et al., 1999). Rabies is known to have occurred in South Eastern Europe in both domestic animals and wildlife since the Middle Ages (reviewed by Mutinelli et al., 2004). Whereas canine rabies was predominant at the beginning of the 20th century and eventually controlled in the 1960s, fox-mediated (sylvatic) rabies steadily increased after World War II, becoming a major public health problem in recent decades (Mutinelli et al., 2004; Petrovic 1987; Wandeler, 2004).

In 1977, fox rabies entered northern Serbia from Hungary and Romania (Lontai, 2004), spreading slowly towards the south. Physical barriers such as the Sava and Danube rivers had contained the fox rabies epidemic for some
time (Fig. 1), but were eventually crossed, resulting in the first noted cases of fox rabies in Central Serbia in 1986 within a region previously free of canine rabies. By 1998, the epizootic had reached Kosovo. Although limited field trials on oral rabies vaccination (ORV) of foxes were initiated in Serbia in 1999 (Mutinelli et al., 2004), the number of reported rabies cases in Serbia increased (data extracted from Rabies Bulletin Europe, Table 1). Croatia and Bosnia & Herzegovina (BiH) recorded the incursion of the fox rabies epizootic from their northern borders in 1977 and 1982, respectively (Velic & Sandrac, 2007). The conflict in the Balkans region, between 1991 and 1995, resulted in a failure to implement adequate rabies control programmes, which is reflected in the steady rise in rabies cases from 1992 (Table 1).

Very few comprehensive studies have been published on the molecular epidemiology of RABV in West Balkan countries (McElhinney et al., 2006; Johnson et al., 2008). A small-scale study was previously undertaken on 32 RABV from the Former Republic of Yugoslavia (FRY) by both genetic and mAb typing (Stankov, 2001), indicating the existence of at least two independent cycles of fox-associated RABV strains. The EU is currently co-financing ORV programmes with an overall aim to eliminate terrestrial rabies from the Balkans (Freuling et al., 2008). As such a more detailed epidemiological picture of the circulating RABV variants is essential to inform vaccination strategies.

Therefore, the objective of this study was to gain more insights into the phylogeny and evolution of rabies virus isolates from the West Balkans. Here, we present a study undertaken on a significantly larger panel of isolates ($n=210$) originating from BiH, Montenegro and Serbia from a range of hosts between 1972 and 2006. Furthermore, nucleotide sequences from other RABV isolates were combined with the panel, enabling us to determine the extent of virus divergence and geographical distribution during an important period in the history of the region.

Estimating when viral lineages emerged or diverged relies on an accurate estimation of the rate of nucleotide substitution and subsequent application of a molecular clock. Bayesian techniques using the Markov Chain Monte Carlo (MCMC) methods have been successfully applied to RABV to estimate the evolutionary rate and divergence times from dated sequences (Hughes et al., 2005; Talbi et al., 2009, 2010; Ming et al., 2010). We have applied a relaxed molecular clock to a variety of N- and G-gene datasets to obtain estimates of the time to the most recent common ancestor (TMRCA), rate of evolution and population dynamics for Balkan RABV.

Table 1. Reported rabies cases in Serbia and Montenegro 1993–2005 (Source Rabies Bulletin Europe)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wildlife</td>
<td>53</td>
<td>25</td>
<td>100</td>
<td>81</td>
<td>67</td>
<td>72</td>
<td>84</td>
<td>112</td>
<td>185</td>
<td>182</td>
<td>184</td>
<td>163</td>
<td>264</td>
</tr>
<tr>
<td>Domestic</td>
<td>29</td>
<td>21</td>
<td>18</td>
<td>29</td>
<td>31</td>
<td>31</td>
<td>29</td>
<td>40</td>
<td>60</td>
<td>36</td>
<td>48</td>
<td>39</td>
<td>107</td>
</tr>
<tr>
<td>Total</td>
<td>82</td>
<td>46</td>
<td>118</td>
<td>110</td>
<td>98</td>
<td>103</td>
<td>113</td>
<td>152</td>
<td>245</td>
<td>218</td>
<td>232</td>
<td>202</td>
<td>371</td>
</tr>
</tbody>
</table>
RESULTS AND DISCUSSION

All Balkan RABV sequences were resolved within the Cosmopolitan lineage (comprising Eurasia, Middle East, Africa 1, Africa 4 and vaccine strains), more specifically within the European/Middle East lineage (Fig. 2). No Asian, Arctic, Arctic-like or bat variants were identified in our study panel.

The West European (WE) sublineage represented on the phylogenetic tree (Fig. 2) encompasses previously published viral sequences from France, Austria, Belgium, Germany, Slovenia, BiH and Montenegro, demonstrating the widespread distribution of this variant in Europe during the fox epizootic in the latter half of the 20th Century (Bourhy et al., 1999). Our data confirm the presence of the WE variant in the West Balkans. The majority of RABV isolates from BiH and four isolates from Montenegro (RV1241, RV1260, RV1261 and RV1282) joined the WE cluster (represented by the RV1189 group [VII] in Fig. 2). The Bosnian isolates in the WE sublineage are similar to the previously published 1986 BiH fox isolate (86111YOU, GenBank accession no. U42706), despite being collected over two decades (1986–2006) (Kissi et al., 1995). The four isolates from Montenegro in group VI are identical to the two isolates from BiH (400 nt, N-gene), despite their origins in the far north of Bosnia.

A single published sequence from a 1972 fox isolate from FRY (86106YOU, GenBank accession no. U22839) was identified within the WE group (Bourhy et al., 1999). However, upon further enquiries with the Pasteur Institutes at Novi Sad and Paris, it was discovered that the 86106YOU isolate was originally sample 2924/72 (designated RV1147 at AHVLA), which in our study was typed as a Serbian fox (SF) variant. We therefore excluded 86106YOU from our study, believing it to be erroneous. Hence, no WE variants were identified within Serbia, despite the large numbers of Serbian RABV isolates included in this study.

The majority of the Balkan RABV isolates in our study were resolved in the East European (EE) sublineage, comprising isolates from Hungary, BiH, Serbia, Montenegro, Bulgaria, Poland and the Czech Republic, collected from various species between 1977 and 2006. Within EE, the viruses clustered mainly geographically, but occasionally a small group of chronologically related viruses were apparent. The largest numbers of identical sequences were obtained for groups III, IX and X. Group III, represented by RV1157, comprised 20 isolates collected between 1977 and 2000 in northern Serbia, particularly in Sombor. Thirteen of the group III isolates were collected during the 1977 fox rabies epizootic that had moved into northern Serbia from Hungary and Romania. It is clear from this group that some viral strains can persist for a considerable length of time as group III strains were collected over four decades. Group IX isolates (n=22), represented by RV1198, were collected in northern Serbia between 1997 and 2006. The group X isolates (n=18), represented by RV1208, were collected from northern Serbia in 1997, 1999 and 2000.

Although the largest number of this group were collected from cats (n=10), the inclusion of six fox isolates would suggest that the feline rabies cases were fox-mediated spill-over events. The EE viruses which were previously shown to be antigenically divergent by mAb typing (mAb groups I and II) and spatially separated (Stankov, 2001) were further resolved on the N400 phylogenetic tree (Fig. 2).

A single Austrian isolate (RV1339) fell central to a large cluster of Serbian isolates within EE. This isolate was collected in 2001 from a rabid dog imported from Belgrade into Austria. A fox isolate (RV2157) collected from Belgrade in 2002 was 100 % identical to the Austrian imported case in the N400 nucleotide region. Interestingly, an earlier case imported into Austria in 1999 involved a rabid horse from Serbia. This isolate (RV1538) also clustered in the EE sublineage but the closest sequence (99 % identity) belonged to a dog isolate from Bosnia (RV1188), which was identical to a Bosnian Wolf strain (8653YOU, GenBank accession no. U42704) both isolated in 1986. Such results retrospectively emphasize the importance of genetic characterization as a tool for tracing imported rabies cases.

No isolates within our Balkan panel joined the North-east European (NEE) sublineage, suggesting that this virus variant may not have established in Serbia, BiH and Montenegro. A recent phylogenetic study of Romanian RABV (Turcitu et al., 2010) reported the presence of a number of viruses widely dispersed through Romania, which aligned closely with the NEE sublineage. The occurrence of the NEE variant so far south may have resulted from a Westward incursion from Ukraine or Moldova. However, a NEE isolate (94250SLK, GenBank accession no. U43007) had previously been identified in Slovakia (Bourhy et al., 1999) and therefore it is plausible that the variant moved into Romania from the North. The NEE variant has been particularly associated with raccoon dogs (Nyctereutes procyonoides) in North-west Russia and North-east Europe (Kuzmin et al., 2004). The distribution of the non-indigenous raccoon dog is expanding to the West and South East of Europe and may hinder rabies vaccination control programmes targeted towards foxes (Singer et al., 2009; Ćirović, 2006). Raccoon dogs were first recorded in Serbia in 1978 (Čirović & Milenković, 1999) and have been associated with a single case of rabies in 2002 (Rabies Bulletin Europe); however, the virus isolate was not available for study. Insufficient data are available for Hungary and Ukraine to make any firm conclusions about the direction in which the NEE variant dispersed.

A group of ‘SF’ RABV isolates and a previously published fox isolate (86107YOU, GenBank accession no. U42703) collected between 1972 and 1977 were resolved on the tree with significant bootstrap support (100 %) and represented the clearest chronological and geographical segregation (Fig. 2). The majority of the ‘SF’ RABV were collected in northern and central Serbia. However, the early SF isolates (1972–1977) were clearly limited in their distribution to northern Serbia (represented by dark green circles in
Fig. 2. Phylogenetic tree comparing 155 Serbian, BiH and Montenegrin RABV with representative global GenBank sequences using a 400 base sequence region of the N gene. Significant nodes, i.e. those with bootstrap values greater than 70% of 1000 data replicates are indicated on the main branches as a green circle. mAb typing data (antigenic group I, blue; antigenic group II, red; antigenic group III, green) are indicated where available (Stankov, 2001).

The natural barriers of the rivers Danube and Sava (Fig. 1), combined with relatively low fox densities in the South, are believed to have played an important role in restricting rabies distribution to the northern regions of Serbia, when the rabies epizootic in the late 1970s spread to Serbia from Hungary and Romania (Mutinelli et al., 2004). Fox rabies was not recorded in Central Serbia until 1986 and the restricted geographical distribution may be reflected in the limited genetic diversity of isolates in this ‘SF’ group. This earlier ‘SF’ group was closely related to a distinct cluster of isolates (nine foxes, one cat and a wolf) collected between 1986 and 2003 from throughout Serbia and from Bulgaria. The clustering of north SF isolates collected in 1986 with isolates collected in central and east Serbia (in 2002) possibly reflects local evolution prior to the southwards spread of the epizootic. Isolated foci of infections were recorded in the late 1980s near to the joint borders of Serbia, Romania and Bulgaria. The surrounding territories in Serbia were rabies free and so the incursions were believed to have arisen due to rabid foxes crossing from Romania into Serbia via the Djerdap dam on the Danube river near Kladovo.

The ‘SF’ isolates above were more closely related to viruses from Bulgaria and the Middle East than European isolates, with the closest isolate (Bulgaria 89, GenBank accession no. DQ300302) collected in 2002 from a fox in the Eastern Province of Targovishte, Bulgaria. Two additional Bulgarian isolates Bulgaria 9 (wolf, Vidin, 2003, GenBank accession no. DQ300295) and Bulgaria 73 (fox, 2001, Montana GenBank accession no. DQ300300), grouped closely with the SF isolates (RV1194, RV1211, RV2076, group XIII and group XXV). These isolates originated from the Vidin and Montana regions of Western Bulgaria, which share a border with Serbia. In addition, a truncated analysis of available Romanian RABV sequences (Turcitu et al., 2010) confirmed the presence of the ‘SF’ variant in a sheep collected in 2005 in Mehedinti, South West Romania (RO47, GenBank accession no. GU086629). This provides further evidence for the southwards wildlife-mediated movement of rabies from Hungary, Romania and Serbia into Bulgaria (Johnson et al., 2007). The ‘SF’ virus isolates represented by RV1219 (group XIII, Fig. 2) had previously been reported as mAb group III variants (Stankov, 2001).

Two closely related viruses isolated from cattle in Rozaje, Montenegro in 1978 (RV1185 and 8658YOU), which remain distinct in Fig. 2, were previously shown to be more closely related to the dog and jackal variants from Georgia, North-east Turkey and the Middle East than the other variants identified in the Balkan region (EE, WE and Serbia fox) and proposed as a spill-over event with a virus from a lineage which was established in the earlier part of the 20th century, before the epizootic in red foxes (Bourhy et al., 1999). An additional viral isolate (RV1146) collected from a dog in 1971 from Odzaci in northern Serbia has been determined to be identical to RV1185 in a partial G-gene region (data not shown) further supporting the theory that the cattle isolates in Montenegro resulted from spill-over events involving a possibly extinct ancestral dog variant (FRY dog).

The maximum clade credibility (MCC) tree for 67 Cosmopolitan RABV (N1350) obtained using BEAST (ESS >160) had a similar topology (Fig. 3) to that observed for the partial N400 phylogenetic tree (Fig. 2), but with improved support at the nodes (posterior probability values >80% indicated for the key nodes). The estimated dates of the most recent common ancestor (MRCA) are illustrated for the key sublineages (when supported) with their 95% highest probability density (HPD) dates (Fig. 3). The TMRCA for the Cosmopolitan panel (n=67), which includes European, Middle East, Africa 1 and Africa 4 RABV is estimated to be 161 years (95% HPD, 111–213 years), which equates to the year 1844 (95% HPD, 1792–1894). The TMRCA for the Balkan RABV including EE, WE, SF and FRY dog variants is estimated to be 120 years (95% HPD, 91–157 years), which equates to the year 1885 (95% HPD, 1848–1914). The mean rate of nucleotide substitution for the N-gene of the Cosmopolitan RABV (N1350 dataset (Fig. 3) albeit with slightly better confidence intervals (1885, 95% HPD 1852–1913). Combining N- and G-gene sequences provided in Table 3. Whilst both the TMRCA and evolutionary rates are similar irrespective of genomic region, the 95% HPD limits are significantly reduced for complete N-gene and concatenated NG-gene sequences compared with partial N-gene and G-gene sequences (Table 3). The estimate of the date of the MRCA obtained for the Balkan RABV in the concatenated NG2755 MCC tree (Supplementary Fig. S1, available in JGV Online) is identical to that obtained for the expanded N1350 dataset (Fig. 3) albeit with slightly better confidence intervals (1885, 95% HPD 1852–1913). Combining N- and G-gene data has previously been reported as optimally reflecting phylogenetic relationships of RABV (Bourhy et al., 2010; Ming et al., 2010) despite differences in methodological approaches, confirming the strength of the available data (Drummond et al., 2003).
et al., 1999). The origins of the FRY dog ancestral variant estimated in this study are earlier than the previously reported early 20th century (Bourhy et al., 1999), possibly due to the inclusion of a larger number of older sequences. The absence of the Middle East RABV in the NG2755 dataset may account for the slightly earlier estimate of the divergence time for the SF variant (1908, 95% HPD 1884–1928, Supplementary Fig. S1) compared with the expanded N1353 analysis (1917, 95% HPD 1894–1937, Fig. 3). The TMRCA obtained for the NEE variant in Fig. 3 (1931, 95% HPD 1904–1942) and the known introduction of the non-indigenous raccoon dog into Eastern Europe between 1927 and 1957, may further strengthen the perceived importance of this species in the maintenance of this variant (Bourhy et al., 1999). The ancestral origins of the WE, Central European (CE) and EE, estimated for both N-gene (Fig. 3) and concatenated NG-gene (Supplementary Fig. S1) sequences supports the belief of a dog to fox host switch in the early decades of the 20th Century.

Irrespective of the gene analysed (N or G), Bayesian skyline plots were suggestive of stable population sizes of Balkan RABV between 1930 and 1970. However, from 1970 a gradual decline in the effective population preceded a rapid expansion starting at ~1990 (Fig. 4a) for N-gene sequences (N1353) and ~1980 (Fig. 4b) for G-gene sequences (G1402). The depression observed may not be significant given the size of the confidence limits. The delay between the expansion observed for the two genes is represented by a biphasic increase for the concatenated Balkan sequences (NG2755, Fig. 4c). A truncated analysis of the Balkan EE sequences alone reflects a similar population profile (data not shown). The SF variant population appears stable over time but ESS values did not reach 100 due to the small numbers involved. The decline in the Balkan RABV population in the 1970s may have been due to the topographical restrictions (Danube and Sava rivers) and low fox densities. The emergence of infected foxes in Central Serbia in the mid 1980s and the subsequent widespread transmission throughout Serbia are reflected in the rapid expansion of the Balkan RABV population (Fig. 4a–c) and the increased number of reported cases in the region, which continued to rise until 2004 (Table 1). Whilst an absence of data during a particular period may
result in a failure to observe the true dynamics at that time, clustering of samples in different time periods (e.g. greater numbers sampled in the 1970s and 2000s than during the 1980s and 1990s) should not introduce bias or artefacts (Rambaut et al., 2008). Surveillance in Serbia, BiH and Montenegro during this period is believed to have been constant and effective, despite periods of unrest, thereby supporting an actual expansion of the RABV population.

Conclusions

This study represents the first comprehensive molecular epidemiological review of RABV in the West Balkans region. All of the RABV isolates investigated joined the Cosmopolitan lineage. The majority of the Serbian isolates were characterized as either belonging to the EE sublineage or the 'SF' group. However, a small number of divergent, possibly ancestral isolates were also resolved. Why no Serbian isolates were represented in the WE, CE or NEE sublineages, whilst the WE variant in particular has been isolated from neighbouring BiH and Montenegro over a significant period of time (1986–2006) remains elusive. This fact may suggest that the fox epizootic that spread to Western Europe, simultaneously moved southwards from Croatia through BiH into Montenegro without contributing to the overall fox rabies epidemiology in Serbia. Topography, in particular the Drina River, may have prevented this variant from entering Serbia from the West. Another hypothesis is that hunting pressure at the territory southwards from the Sava and Danube rivers diminished due to hunting restrictions during the conflicts, which resulted in increased fox density and facilitated rabies spread southwards. This may be supported by the observed decline and then rapid expansion of Balkan RABV population in the Bayesian skyline plots. Alternatively, the WE variant may not have competitively co-existed and the more dominant 'SF' or EE variants persisted, whilst the WE variant became extinct. Retrospective typing may detect single intermediary variants or ancestral variants, which have since been replaced by emerging strains.

The ‘FRY dog’ isolates identified in cattle in Montenegro (1978) and a dog in Serbia (1971) may be residual representatives of an ancestral dog RABV variant now extinct in the Balkan region, due to the successful elimination of dog-mediated rabies by parenteral vaccination. Dog rabies is

Table 2. Geographical and chronological distribution of isolates available in this study from FRY

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bosnia & Herzegovina</td>
<td>21</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td>Montenegro</td>
<td>13</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Serbia</td>
<td>175</td>
<td>36</td>
<td>5</td>
<td>45*</td>
<td>89*</td>
</tr>
<tr>
<td>Kosovo</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>210</td>
<td>37</td>
<td>9</td>
<td>50</td>
<td>114</td>
</tr>
</tbody>
</table>

*Includes imported case into Austria.

Fig. 4. Bayesian Skyline plots of population history for FRY RABV sequences (n=37) for (a) the N-gene sequences (1353 nt), (b) G-gene sequences (1402 nt) and (c) concatenated NG-gene sequences (2755 nt). The solid black line represents the mean values and the grey lines show the limits of the 95% HPD. Time is shown in years across the bottom of the plot and the effective population size is shown on the left-hand scale.
still reported in this region but with the exception of the 1971 isolate RV1146, all of the dog isolates analysed in this study were either EE (in both Serbia and BiH) or WE (in BiH) variants and hence reflect fox-mediated spill-over events rather than dog-mediated rabies.

The nomenclature of European RABV variants (Bourhy et al., 1999) no longer adequately describes their geographical distribution. A review of all European RABV sequences should be undertaken and numerical rather than geographical labels assigned, particularly when neighbouring geographical areas are known to be unstudied. The authors admit that their own nomenclature, e.g. ‘SF’ given its presence in Romania and Bulgaria, may also be misleading. However, until new variant names are agreed, these problems will challenge all future studies.

Our study contributes to the general understanding that RABV lineages differ in their evolutionary rates depending upon geographical location, population dynamics and selective pressures as shown in the Middle East (David et al., 2007) and in Africa (Hampson et al., 2007; Talbi et al., 2009; Hayman et al., 2011). Such investigations uncover the dynamics and mechanisms of viral evolution and transmission and will contribute to future control programmes. This study highlights the population expansion of sylvatic RABV in Europe and the possible associated effects of ‘anthropological interference’ on its evolution and spread.

METHODS

Virus isolates. A panel of samples from the Balkans (n=210 original brain material) was obtained from viral archives at Pasteur Institute Novi Sad, Serbia and Friedrich-Loeffler-Institute, Wusterhausen, Germany (Table 2, Supplementary Tables S1 and S2, available in JGV Online).

RNA extraction and RT-PCR. The protocols used followed previously published methods (Heaton et al., 1997). Briefly, total RNA was extracted directly from the brain material using TRIzol (Invitrogen) following the manufacturer’s instructions and resuspended in HPLC grade water (Sigma). Each sample was quantified (Invitrogen) following the manufacturer’s instructions and the RNA concentration adjusted to 1 lg ml⁻¹. For partial N-gene amplification (606 bp), reverse transcription was performed using the pan-lyssavirus primer JW12 (5’-ATGTAACACCYCTACAATG-3’), 2 pmol of JW12 primer using Superscript III (Invitrogen) and 100 ng of total RNA and 2 pmol of JW12 primer using Superscript III (Invitrogen) in a 20 ml final volume following the manufacturer’s instructions. Long distance PCRs were undertaken using Elongase (Invitrogen) following the manufacturer’s instructions. To amplify the full N-gene, primers JW12 and 304Rev (5’-TTGACGAAGATCTTTGGTCT-3’) were used, resulting in an amplicon of approximately 1.5 kb. To amplify a 2.7 kb region of the RABV G-gene the primers MF2 (5’-CTATTAACATCCCTCAAAG-3’) and N-L Rev (5’-TCCCGATCT-AGGCGRTTCATG-3’) were employed. Amplified products were visualized by agarose gel electrophoresis (2%) with ethidium bromide. The products were purified using the QiAquick PCR purification kit or gel extraction kit (Qiagen) following the manufacturer’s instructions.

Sequencing of PCR products. Purified PCR products were sequenced directly (primers available on request), either using the Big Dye sequencing kit (Applied Biosystems) or the Quickstart sequencing kit (Beckman-Coulter) on the ABI 3100 or Beckman CEQ8800 machines, respectively.

Sequence analysis and phylogenetics. Forward and reverse 400 bp N-gene sequences for each isolate were aligned using Seqman (Lasergene, DNASTAR) and consensus sequences obtained. For ease of analysis, duplicate sequences were removed. Details of the clusters of identical sequences are given in Supplementary Table S2, identified by the group labels I–XXVI (Fig. 2). The remaining unique sequences (n=61) were compared to other previously published RABV sequences (n=94) using a common 400 bp region (Supplementary Table S1). Multiple sequence alignments were performed in CLUSTAL_X using a multiple sequence format file (msf) created in MEGALIGN (Lasergene, DNASTAR). Transition/transversion ratios were calculated in the Puzzle 4.0.2 programme of the PHYLIP package version 3.5 (Felsenstein, 1989). Phylograms were generated using the maximum-likelihood parameter of the DNADIST and neighbour-joining programmes with bootstrap resampling of 1000 replicates as described previously (Johnson et al., 2003).

To investigate the evolutionary history of West Balkan RABV, a panel of 67 RABV N-gene sequences (N1353 nucleotide), collected between 1972 and 2005 from a range of species were analysed, including available published sequences from GenBank (Supplementary Table S1).

To determine the optimal region for evolutionary analysis, a subset of 37 West Balkan RABV, collected between 1972 and 2000, were analysed for which both G-gene and N-gene data were available. Five datasets were prepared representing partial N-gene (N400), complete

Table 3. Mean TMRCAs and nucleotide substitution rates per site per year calculated from duplicate BEAST analyses (uncorrelated lognormal relaxed clock, SRD06 model, coalescent constant size tree prior) for 37 FRY RABV using five datasets: N (N400; N1353 nt), G (G600, G1402) and concatenated (NG2755).
N-gene (N1353), partial G-gene (G600), extended G-gene (G1402) and concatenated N- and G-gene (NG2755).

The MCC phylogenetic tree, estimates of the rate of molecular evolution (substitutions per site per year) and the TMRCAs for the alignments were inferred using a Bayesian MCMC method in the BEAST package (BEAST and associated programmes are available via http://beast.bio.ed.ac.uk/) (Drummond & Rambaut, 2007). The HKY (SRD06) model of nucleotide substitution model, incorporating a gamma distribution of rate variation among sites (T4) was used for the BEAST analysis. To compare the variability in nucleotide substitution rates, models of both strict and relaxed (uncorrelated exponential and lognormal) molecular clocks were tested. Bayes factor analysis (estimated in the Tracer programme) strongly recommended a relaxed (uncorrelated lognormal) molecular clock approach. The statistical uncertainty in the data for each parameter estimate is reflected by the value of the 95% HPD.

For this analysis, an input file for BEAST was generated using the BEAUti programme with sequences annotated accordingly (Sample ID_Location_Host_Year_Isolated.seq). For each estimate, duplicate BEAST runs were performed to test the reproducibility of the analysis. The BEAST output was assessed using the TRACER programme. For each analysis, a chain length of 15 million steps resulted in an effective sampling size (ESS >200 unless noted), with 10% burn-in removed. Trees and parameters were recorded every 6000 steps. The trees obtained from BEAST were used as input for the TREEANNOTATOR programme to find the MCC tree. Phylogenetic trees were edited for publication using FigTree (version 1.3.1; http://tree.bio.ed.ac.uk/software/figtree/) (Rambaut, 2007). Posterior probability values represent the degree of support for each node on the tree.

Bayesian skyline plot analyses were conducted as above for 37 Balkan RABV on three datasets N1353, G1402 and concatenated NG2755 using the Coalescent Bayesian Skyline as the tree prior (10 groups and ESS >200) (Drummond et al., 2005).

ACKNOWLEDGEMENTS

The authors would like to thank Yann Moller, Stacey Leech, Graeme Harkess, Colin Black and Dr Nick Johnson at AVHLA for technical assistance and Anke Kliemt (Friedrich-Loeffler-Institute) for the preparation of the isolate map. The authors wish to gratefully acknowledge the acquisition of virus isolates from Dr E. Vanek, Dr R. Valtchovski, Dr R. Velic and Dr V. Sandrac. The authors would also like to thank Dr Hervé Bourhy, Pasteur Institute Paris for helpful communications regarding archived viruses and Professor Oliver Pybus, Oxford University for tuition and advice regarding BEAST. This work was supported by a grant from the Department for Environment, Food and Rural Affairs (Defra), UK (ROAME SE0423). This investigation was partly funded by the Federal Ministry of Education and Research, Germany (BMBF, grant 01KI1016A).

REFERENCES

